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Analysis of Transients in Nonuniform and
Uniform Multiconductor Transmission Lines

OLGIERD A. PALUSINSKI, SENIOR MEMBER, IEEE, AND ANYU LEE

Abstract —Delay times of digitaf logic circuits are now becomhsg smaller

than those of interconnections used in packaging. At high speeds, such

interconnections no longer behave as simple short circuits, but take on the

aPP-ante of transmission fines. One may choose to solve the problem of
delay by increasing the density of tbe system. This, however, introduces

the problem of “cross tafk. ~) me an~ysi~ of delay and cross tafk in a

system of transmission lines is rather complex; for this reason, it is usuafly

done with the aid of computer simulation. The present paper introduces a

very efficient and flexible time-domain anafysis technique to predict the

reflections and cross tafk. Numericaf results show that this techrdque is

indeed efficient and accnrate in the transient analysis of generaf multiple

coupled line systems. Furthermore, this afgoritbm will eventually be coded

in a form of subroutine compatible with any standard CAD program, such

as SPICE.

I. INTRODUCTION

T HE TRANSIENTS in high-speed digital integrated

circuits are characterized by a signal rise time shorter

than one nanosecond. The interconnections in systems
composed of such circuits have to be treated as multiple

coupled transmission lines. A designer of interconnections

must take into account effects associated with transmission

lines such as dela~s, reflections and cross talk.

A possible solution to the problem of reflections is to

decrease the length of the interconnections by increasing

the system density. The trend toward greater density,

however, brings about another problem, that of cross talk

between the various conductors of the system. This cou-

pling, which often exists between two adjacent transmis-

sion l~es, may be strong enough for signals to appear on

both lines when they are desired only on one. The problem

of cross talk is present even if lines are terminated, and

since these lines are carrying digital information, this un-

wanted coupling introduces false information into the sys-

tem. The general category of extraneous voltages and

currents due to reflections and cross talk is commonly

called interconnection noise. Hence, in designing a high-

speed d@al system, both the circuits and the interconnec-
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tions must be considered or system performance lmay be

impaired. The analysis of system interconnections is in-

volved owing to the presence of multiple lines and @cont-

inuities caused by the abrupt changes of geometry at

pads, pins, and even conductor bends. Such discontinuities

are modeled by equivalent circuits which give satisfactory

results for the transients of interest caused’ by the signals

with rise times not smaller than 100 ps. Metal lines be-

tween the discontinuities are modeled as transmission lines.

The lines on boards are treated as uniform. The lines on

chip carriers, between chip pads and pins, are usually

nonuniform owing to geometrical constraints. Thus when

analyzing the signal transmission through the interconnec-

tions between the fast integrated circuit chips, one needs to

deal with a model composed of various transmission lines

interconnected thiough equivalent circuits representing the

.discontinuities.

A considerable amount of work has been done on the

properties and applications of multiple coupled intercon-

nections since 1970 and even earlier [1]–[8]. Ahnost all of

them dealt with lossless lines, for which analysis can be

greatly simplified after introducing the so-called normal

propagation modes. The disadvantage of this mode-based

analysis is mainly its inflexibility; for example, it cannot

easily handle lossy and nonuniform coupled lines. Besides,

this method is not efficient when lines are terminated with

nonlinear networks, which is the case in practice. The

lossy, uniform lines are computed using modal analysis in

the frequency domain [6]–[8] and -tedious, error-prone

transforming procedures are necessary to obtain the results

in the time domain. The modal analyses (in both the time

and the frequency domain) are not applicable to nonuni-

form lines. A method based on perturbational techniques

for analysis of a pair of nonuniform lines is presented in

[9]. This approach involves complex procedtqes employing
many simplifying assumptions, and its applicability is basi-

cally limited to two lines only. The computation of trans-

mission line parameters has received much attention in the

literature [10] -[12]. Such parameters are usually arranged

in the form of conductance, resistance, inductance, and

capacitance matrices and it is assumed here that those

matrices are available.
The purpose of this paper is to present an effective

method for computation of the transient response of multi-

ple nonuniform transmission lines. The important feature
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of the method is its flexibility in application to many types

of transmission lines (lossless, lossy, uniform, nonuniform)

and to arbitrary circuit terminations. Based on the final

formula derived in this analysis, we can easily convert the

transmission lines to general active resistive networks. Thus

the time-domain transient behavior of coupled lines with

terminating networks can be analyzed by general circuit

simulation procedures.

The method derived in this paper is based on the spec-

tral method often used in applications to the numerical

solution of partial differential equations [13]–[15]. The

essential idea is to approximate spatial or time derivatives

by constructing a global interpolant through discrete data

points. The most useful interpolants are Chebyshev and

Legendre polynomials [16]. The advantage of spectral

methods is that they are more accurate than finite differ-

ence or finite element methods, so that fewer grid points

are needed. The stability theory for algorithms based on

spectral techniques is not yet as developed as in the case of

finite differences [17], but recent mathematical publica-

tions [14], [18] indicate efforts aimed at improving this

situation.

In this paper we choose Chebyshev polynomials as the

interpolants, because they have much simpler representa-

tion of derivatives and are very efficient in the computa-

tions owing to the relation with the fast Fourier transform

(FFT).

H. MATHEMATICAL MODEL OF NONUNIFORM

INTERCONNECTION

A nonuniform interconnection is characterized as a

transmission line with spatial variations of resistance, ca-

pacitance, etc., caused by changes in geometry or materials

along the connecting direction. Under the TEM assump-

tion we obtain a set of partial differential equations

dv Ji
—=–r(x)i–l(x)~
ax

di

x
=–g(x)u– c(x):

where

(1)

(2)

U=u(x, t)

i=i(x, t).

We assume that equations are in dimensionless form; the

scaled spatial variable is in the range [ – 1, 1].

The voltage u and current i must satisfy the boundary

conditions:

u(–l, t)=%[i(–l, t), t] (3)

v(l, t)=~[i(l, t), t]. (4)

The symbols % and ‘3’ represent operators which might be

time varying and in general describe the ordinary differen-

tial equations characterizing the terminating networks.

The line voltage and current must also satisfy the initial

conditions:

U(x,o)=hl(x) (5)

i(x,0)=h2(x) (6)

where hl(x ) represents the initial voltage distribution and

h ~(x) is a function describing the initial current distribu-

tion. The functions r(x), l(x), g(x), c(x) are determined

from the electromagnetic field calculations and are as-

sumed to be given.

For multiple coupled lines, we can generalize (1) and (2)

to get

aV1
-- ; r,k(x)ik - ~ l,k(x$+

z– ~=1
(7)

k=l

13 ij

i3x =
- k&,k(+k- f %(4%

k=l

forj=l,2,3,. ... X (8)

where % denotes a number of lines (excluding the refer-

ence line):

vJ=vJ(x, t), j=l,2,. ..,.X-

i,=i, (x, t), j=l,2,. .. X.X’-.

The functions of r,~(x), g~~(x), lj~(x), and cj~(x) are as-

sumed to be given. The line voltages v, and currents ij

must satisfy the boundary conditions:

vj(–l, t)=~. [il(–l, t), iz(–l, t),. “., iw(–l, t),l]

(9)

uj(l, t)=$YJ[il(l, t), i2(l, t), ”.”, iX(l,l), t]

(lo)

where the symbols ~ and 9?Jare the operators represent-

ing the differential equations which describe the terminat-

ing networks.

The line voltages and currents at the moment t = O

(initial moment of transient analysis) are given in the form

VJ(X, O) = hlj(x) (11)

ij(x, o) = h2, (x) (12)

where AIJ (X ) represents the initial distribution of voltages,

and h 2J(x) are functions describing initial distribution of
line currents.

Introducing the vector notations

V=[V1, V2,. ... U%]T

i=[il, i2, ..., iX]T (13)

~(x) = {+k(x)} ~(~) = {Zjk(x)}

~(x) = {+(4} G(x) = {g,k(x)]

j,k=l,2,. ... X
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we can write (7) and (8) in a convenient, compact form:

(?V
.

ax
—=– R(x)i– L(x);

129

a ~ ( t), b; (t ),, will later be replace~ by simple combinations

of a(t) and b(t). The symbol X denotes the summation

with the first component divided by 2. This notation

simplifies the formulas and is commonly used in spectral

techniques [19].

Inserting the expansions (19)–(21) into the model equa-

tions (1) and (2) yields

i3i

ax
—=– G(x)o– C(X);. (14)

The boundary conditions are written in the form
co w

O(–l, t)=. %[i(-l,t),t] (15)

o(l, t)=~[i(l, t), t] (16)
‘, db~(t)

–1(x) ~ — T~(x) (22a)
k=o d’

where & is a vector operator with the entries ~(.),
j=l, z,..., .%?, and % represents a vector with the entries

~J(. ), j=l,2,. ..%.%-.

The initial conditions written in the vectorized form are
~’ b:(t) T,(x) = -g(x) ~’ ~k(t)~k(X)

k=O k=O

~, da~(t)
–c(x) ~ ‘~k(X). (22b)

k=o dt

which are functions of x, are ex-

series:
w

t)(x, o) =Izl(x) (17)

i(x, o) =h2(x) (18)

The line parameters,

panded in Chebyshev
where

h:(x) = [hll(x), h12(x), ” ““,)71%(X)]

r(x) = ~’ rkTk(x) (23a)
k=O

h:(x) = [/’z21(x), h22(x),.. ., fi2w(x)].

III. FORMULATION OF SPECTRAL EQUATIONS
l(x) = f’ lkTk(x) (23b)

k=OIn this part, we describe the approach for solving the

interconnection line problem using the Chebyshev polyno-

mials. At first, we need to decide how to expand the

unknown variables in the Chebyshev series. We have fol-

lowing choices:

g(x) = f’ gk~k[x) (23c)
k=O

c(x) = f ckTk(x). (23d)

1) time-expansion approach

2) spatial-expansion approach.

k=O

The symbols r~, lk, g~, and c~ represents constants defined

as

(r(x), Tk(x))

‘k= (Tk(x), Tk(x))

(dx), Tk(x))

‘k= (Tk(x), Tk(x))

Here we would like to concentrate on the second ap-

proach, because it gives a more convenient representation

of boundary conditions and the derivations are simpler.

The time-domain expansion method will be discussed in a

separate report. In order to make the derivation of the

algorithm easy to understand, we start with the single-line

case and then extend the results to the multiline case.

Using Chebyshev polynomials to represent the variation

in space, we can express the i and u as follows:

(l(x), Tk(x))

‘k=(Tk(x),Tk(x))

(c(x), Tk(x))
“= (Tk(x), Tk(x))u= jj’an(t) Tn(x) (19)

~=o
where (a, b) denotes the inner product of a, b defined for

Chebyshev polynomials [19]. Inserting (23) into (22), we

get
i= f’ bn(t)7’’(x). (20)

~=()

It is also convenient to assume here the expansion of

derivatives in the form

mm

‘f’a~(l)Tk(x) =
k=O

(21a)
f’zl, “ WTk(x)~(x) (24a)

k= O~=O

- f’ f’ gluk(t)Tk(x)~(x)

—

:= f b:(t) Tk(x). (21b)
f’15:(t)Tk(x) =

k=O

OX k=O

The symbols T.(x) are Chebyshev polynomials and

an(t), bn( t ) are the coefficients of expansion to be deter-

mined. The expansion coefficients for the derivatives,

k= Oj=O

—
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Equations (24a) and (24b) have identical structures; there-

fore we shall continue the discussion of (24a) only. The

same approach will then apply to (24b).

Performing the inner product of both sides of (24a) with

Tin(x), we get

f’ a:(l) (l’k(x),q(x))

k=O

= - f’ f’ b,(t)~,(~,(x)~(~)j~m(x))
~=oj=o

-f’~l,y (~k(X)~(X), ~m(X)). (25)
~=oj=o

Considering the relations [19]

1

)T~~ = ~(T~+j + Tlk.jl > k,j=0,1,2, . . .

{Tk, L) = 8km

and using the vector notation, we write (25) in the form

(26)

where

A*= [a$(t), ay(l),. +

ii= [be(t), bl(t),.. . ]T

l?,(i, j) = – ;(ll+J+/,z_,l),i,j = 0,1,2, . . . .

We shall now eliminate a:(t) by a~(t) using the relation

[14]

an(l) = #-(af_l(l) -aj+l(t)) forn=l,2, . . . .

(27)

Writing the relations (27) and (28) in matrix form, with the

truncation, we obtain

al = ~~* (29)

where

al= [al(t), az(t),. . .,a~+l(t)]=

A*=[a$(t), a~(t),..., a#(t)]~

and the (N+ 1)X (AI’ +1) square matrix, H, has entries

defined as follows:

1
1

l<i=j<N–1~,

1

h,, = ‘~’
l<i=j–2<N–l

!
1

z’
i=j=Nandi=j=N+l

o, otherwise.

We want to eliminate vector al in (29) and replace it

with the vector AT= [aO(t), al(t),. . . . a~(t)]. Using the

expansion (19) (truncated after N + 1 term) to represent

the near-end boundary voltage, u ( – 1, t), and taking into

account that T~( – 1) = ( – 1)’”, we obtain

N+l

~’ (-l) ’a,(t) =~(-ljt)
k=O

or else

a~+l(t)= $ (-l)~+ka,(t)-(-l) ~u(-l,l). (30)
k=O

Using this relation we can now write

al= QA+e~u(–l, t) (31a)

here Q is a (N+ 1) x (N + 1) square matrix and e~ is a

(N+ 1)-dimensional veetor:

[e;= 0,0,. ... 0,–(–ly”].

The matrix Q is defined as follows:

o 0 . . . 0

1 0 . . . 0

. .
. .- i

I:(-l)N -(-l)N (-l)N -(-l)N . . . 1
I

(31b)

Truncating the series at n = N, we get The formula (31a) used in (29) yields the desired relation

between the vectors A and A* in the form

QA+eNu(-l, ~)=lL4*. (32)

aN(t)=~a&l(t) The equations (26) written for the series truncated at N,

and multiplied from the left by the matrix H, yield

1
aN+l(t) =

2(N+1)
aj(t).

@4+eNu(–l, t)= HK,B+HKl~ (33)

(28)
where K,, K, are truncated (N+ 1) X (N + 1) matrices ob-
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tained from infinite matrices ~,, 1/[ and

BT= [be(t), bl(t),. ... b~(t)].

The initial conditions B(O) are determined using the line

initial current distribution (6):

{

2(i(x,o),l) k=O;

“(o) = (i(x,o), Tk(x)), l+k<N.
(34)

An analogous procedure is applied to equations (24b)

with the difference that in eliminating the coefficients

b~ (t) for the expansion of current derivatives by the

coefficients b~ ( t ) defining the current expansion, we use

the far-end boundary condition, i(l, t), for the current and

the fact that T~(l) =1, The resulting equations are

QIB + e~li(l, t) = HK,A + HKC~ (35)

where QI is an (N+ 1) X (N + 1) square matrix, e~l is an

(N+ I)-dimensional vector defined as e~l = [0,0, 0.0,0, 1],

and

1
KC(.i, j) = – ~(C~+j+Cl~-Jl), i,j=0,1,2,. ... N

1
~g(i)j) = – ~(gl+,+glz-jl)> i,j=0,1,2,. ... N.

(36)

The matrix QI has the same structure as the matrix Q

defined in (31b) but the last row has as its first entry

– 1/2 and the remaining entries are all of value – 1. The

initial conditions, A(0), are determined using the initial

distribution of voltage in the line as given in (5) and the

procedure analogous to the one determined by (34).

IV. SPECTRAL EQUATIONS FOR MULTIPLE LINES

The treatment of multiple-line equations is analogous to

the one for a single line. We expand the line voltages and

currents in series:

Uj= f’ a~(t)Tk(x)
k=O

i,= f’ b~(t)l”~(x) (37)
k=O

where a~(r), b~(t), j = 0,1,2,. c”,%, are unknown coeffi-

cients to be computed, Those are arranged in vectors A, B

with entries Aj, Bj defined as follows:

Aj=[a~(t), a((t),.. -]~

B,= [bJ(t), b((t),. . . ]*. (38)

The line parameters (entries of L(x), C(x), R(x), G(x)

matrices) are also expanded into Chebyshev

ljn(x) = f l#Tk(x)
k=O

Cjn(x) = f’ c#Tk(x)
k=O

rjn(x) = f’ r/$rk(x)
k=O

gjn(x) = f’ Z#Tk(x).
k=O
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series:

(39)

These expansions are then applied to equations (7) and (8)

and the properties of Chebyshev polynomials are used to

construct the truncated equations for the vectors A, B of

unknown coefficients. The procedures are described in the

Appendix. The resulting equations are

j=l,2,. ... Z

where H is the matrix defined in (29), Q and QI are the

matrices defined in (31b) and (35), respectively, e~ and

e~l are the vectors defined in (31a) and (35), respectively,

and K}n, Kjn, K;n, and K:n are square (N+ 1) X (N + 1)

matrices formed (assuming the truncation of Chebyshev

series at N) by the known coefficients of line parameter

expansions (see the Appendix).

Introducing the %(N + 1) x %(N + 1) square matrices

Fl=H{K;J}

I?C=H{K:, }

kr=H{K:J}

i~=H{K:}

i,j”=l,2,. ... X

Q=diag{Q}

QI= diag{ Q~}
E=diag{e~]

El= diag { e~l }

o(–l, t)=[ul( –l, t), u2(–l, t),. .”, u&(–l, t)]T

i(l, t) = [il(l, t), ij(l, t),. “ “,i&(l, t)]T (41)

we can write (40) in compact form:

QIB +Eli(l, t) = I?,A + XC:

QA+Ev(–l, t)=i,B+il$ (42)

which is analogous to (33), (35). In the definitions (41) the

symbol “diag {(. )}” designates a block diagonal matrix
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composed of identical blocks (.). The initial conditions,

A(0), B(O) are determined using relations (11) and (12) in a

way similar to the one used in the case of a single line.

V. COMPUTATIONAL CONSIDERATIONS

Equations (42) describing the evolution of expansion

coefficients in the case of multiple lines have the same

form as (33) and (35), corresponding to a single-line case.

Further discussion will therefore be conducted in relation

to (42). This section is devoted to a discussion of numerical

treatment of (42), determining the expansion coefficients.

Introducing the vector notation

we can write (42) in the form

(43)

dP

‘%+ “p= ‘w
(44)

where M,, M,, and E are (2h4 + 2) X (2M + 2) square

matrices with constant entries, and W is the vector of

forcing functions W T = [ U( – 1, t), i(l,t)].The matrices in-

troduced in (44) are defined as follows:

Equation (44) is discretized using the popular backward

differentiation formula (BDF) for the derivative approxi-

mation:

dP
=A~ap

dtt=t. kj=o J ‘-J
(45)

where h is the integration step size, aj and k are constants

characteristic for a specific type of BDF, and P, denotes

the numerical approximation to the exact solution P(tz ) of

the differential equation at a discrete moment of time, t,.

Application of (45) to (44), expressed for the time t = tn,

yields

In particular for two-step Gear’s method [20] (k= 2, a.
=3 ~,cl~= – 2, az = ~) we have

(~M+Mr)p=E~+i(2Mp-1-:Mpn-2)
(47)

Computations based on (47) require a additional, single-

step formula for starting at t = O and after each change of

step size.

An alternative integration formula can be built using the

matrix exponential. Equations (44) are premultiplied (from

the left) by the inverse of Mi (det Ml # O because I?l and

l?C are not singular), yielding

~= KP+FW (48)

where K is a square, 2.%?(N + 1) X 2.%(N + 1), matrix

defined as follows:

and F is a rectangular, 2 X!( N + 1) X 2%7, matrix of the

form

Using the transition matrix technique [21] we can write

(48) in the difference form

P(tn) =GP(tn_l)+

where G is the matrix exponential

G=~Kh

and AP( tn) is the increment

AP(tn) (49)

(50)

‘f K(Ac–7)~W(tn_1 + T) dr.
AP(tn)=~ e (51)

Equation (49) forms the basis for simple numerical compu-

tation of time evolution of vectors A, B.

VI. CIRCUIT MODEL OF TRANSMISSION LINE SYSTEM

The analysis provided above allows us to derive a model

of a transmission line system in the form of an equivalent

circuit which is suitable for implementation in a

analyzer. Equation (49) can be written in the form

where the vector W. represents voltages at the ends

lines

Wn = ()ZJ(-l,tn)

i(l, tn)

and P. represents the numerical approximation to

This approximation is obtained by replacing the

function, w(tn_~+ o-),in the integrand with its

interpolation based on the end values W._ ~ and W..

circuit

(52)

of the

P(tJ.

vector

linear

More

sophisticated approximations are available [21], but will

not be discussed in this p~per. The rectangular 2X(N + 1)
X 2X matrices cl and Cz are defined as follows:

Equation (52)

circuit for the

can be used to determine

system of multiple coupled

(53)

the equivalent

lines. To sim-
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1(-1, tn) i(l, tn) TABLE I

‘(-’’’nim”o r;”) “’xar “ED’ ‘F’:z ~E~ ‘

COMPAFUSON OF CPU Trm (VAX-11/750 VMS) IN COMPUTING USING

Fig. 1. Equivalent circuit of transmission lines (for the moment t= tn).
4 360 sec. 370 sec.*** not computed”’
5 199 sec.

l., V. are independent current and voltage sources determined by tie

not applicable 4 hrs 6 rnin

solutions at t = tn _ ~. *Results obtained using the program UACSL [22], based on time-
domain modal anatysis.

* *Estimated CPU time will be severat ho~s.

plify the notation we restrict the discussion to the case of a *** Runningsimplified line model (assuming zero losses) with the use

single line only. The results can be extended to multiple of expanded UACSL, which allows simulation of nontinear terminations.

lines without any conceptual difficulty. It will be conve-

nient to introduce the following 2( N + I)-dimensional vec- VII. NUMERICAL EXAMPLES

tors: To illustrate the properties of the algorithm discussed in

(

this paper, some specific examples are presented. The
~;= :,1,...,1,0,...,0

)
numerical results were compared either with published

experimental results (if available [1]) or with computations

(

1
e;= 0,. ..,0, —, —1,l,. ... (-l) N).

performed using other programs based on time-domain

(54) modal analysis [22] and the SPICE simulation. The results2

Using (54), the definition of vector P., expansions (19) and
of comparisons are very encouraging; the CPU times listed

in Table I show that the efficiency of this method is indeed
(2o), and the fact that T.(l)= 1, T.( – 1) = ( – l)n, we impressive.

obtain Example 1: A Three-Conductor Lossless Microstrip

e~Pn=u(l, t~) The dimensions of the microstrips and their external

circuit terminations for this example are taken from [1].
and The capacitance (in pF/cm) and inductance (in nH/cm)

e~Pn=i(-l, t~). (55) matrices of the microstrips are, respectively,

Multiplication of (52) (from the left) by e: and subse-

(

1.0413 –0.3432 –0.0140

quently by e; yields therefore C = – 0.3432 1.1987 –0.3432

–0.0140 –0.3432 1.0413 )
u(1, t.) = ef~2W. + e~(GP._l+~lWn_l)

i(–1, t.) = e~~’W. + e~(GP._l + ~lW._l). (56)

[

3.8790 1.6238 0.8285
L = 1.6238 3.7129 1.6238

The second term on, the right side of each of the above 0.8285 1.6238 3.8790 )

equations depends on previously computed quantities and
The input voltage source (in V) is

is thus considered to be given in the solution for step n.

These terms will be denoted

(
e(l) = ~“~’

t<0.1 ns

‘(
- )=~oel GP.–l + CIWW–l

t >0.1 ns.

‘( “ )=l..e2 GPR. I + CIW. –l (57) The waveforms of the transient responses computed using

our program are presented in Fig. 2. They are close to the
Taking into account the structure of matrix F and the experimentalonesgivenin[1]within recording accuracy of

definition of the vector W~T= [ U( – 1, tn),i(l,tn)],it is easy about 5 percent.The correspondingCPU time is listed in

to verify that the Table I.

@2% = &qi(l, t.)
Example 2: Two-Conductor Lossless Lines with Dynamic

Circuit Terminations

e~~2Wm= G.qU( -1, tn) The tested circuit is shown in Fig. 3; the line length

s = 2.8 cm. The parameters of the two lines are:
where R,q and G~ are constants which we call the equiva-

lent resistance and the equivalent conductance. 1 = 0.0656 nH\m

Using these results and the definitions (57) in (56), we

obtain the following form of difference equations (52) of
c = 0.98 pF/m

the transmission line: 1~ = 0.0128 nH/m

u(l, t.) =Reqi(l, tn )+VO cm = -0.117 pF/m

i(–l, t~)=Geqo(– l,t~)+ IO. (58)
where 1 and 1~ are self and mutual inductances and c and

This form defines the equivalent circuit shown in Fig. 1. cm are self and mutual capacitances. The input voltage
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Fig. 2. Transient response of thethree-conductor system. A—near-end

voltage on active line (Via). B—Far-end voltage on active line (Vlb).

C, D, E, F—Crosstalk voltages (V2~), (V2.), (~b), (K.), respectively,
on the lines 2 and 3. Note: The symbols in parenthesis are the same as
those in [reference 1, figs. 8 and 9].
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Fig. 3.

+10-’2’F- ‘0-’2’11’03’. . .
Two-conductor transmission line with linear terminating net -
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Fig. 4. Transient voltages in the two-conductor transrnkon line sys-

tems given in Fig. 3. A—Near-end on active line. B—Far-end on

active line. C —Near-end on quiescent line. D— Far-end on quiesceni
line.

source (in T() is

{
lot,u,(t) = ~ t <0.1 ns

t >0.1 ns.

The computed waveforms of transient responses are given

in Fig. 4. The waveforms were compared to those com-

puted using the UACSL program [22] and SPICE (model

in the form of a chain of L, C lumped circuits). The

solutions were very close within 1 percent accuracy. The

CPU time necessary for solution is shown in the Table I.

06,
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~ 01

~ 00 -----
>
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-05 t L

-“13 ~

00 0.5 10 15 20 25 30 35 40 4,5 5,0

nanoseconds

Fig, 5. Crosstalk voltage in the middle of a quiescent line, computed
using the spectral technique.

Example 3: Two-Identical-Conductor Lossy Nonuniform

Lines
The example transmission system is described in [9]. The

parameters of the two lines having the same length ofs = 2

cm are

10
1=

l+k(x)

l~=k(x)* l(x)

co

C=l–k(x)

cm = k(x)* c(x)

“x)=02’(1+0’s+x+:
10= 3.87 pH/m

CO= 1.0413 pF/m

r=l.2 fl/m

r~=O.

g=gm=o.

The symbols 1, 1~, c, and cm have the same meanings as in

Example 2. The input voltage source (in V) is

{

21, t<0,5ns
0.5ns<t<lns

u,(t) = }’_2(t– 1)>
lns<t<l.5ns

o t>l.5ns.

The model of this transmission system was implemented

using our prototype program based on the spectral tech-

nique. The transients were computed, and the results com-

pared favorably to those given in [9]. The corresponding

CPU time is given in Table I. An example of cross talk

voltage in the middle of quiescent line (line 2 in [9])

computed using our program is shown in Fig. 5. The result

corresponds to [9, fig. 14].
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Fig. 6. Two-conductor transmission line with nonlinear terminations.

Example 4: Two-Conductor Lossy Transmission Lines with

Nonlinear Terminations

The algorithm based on spectral techniques can be easily

used to compute the transients in the lines with nonlinear

terminations. To illustrate this capability, we use two con-

ductor lines, considered in [7], having a length of 50 cm

and terminated as shown in Fig. 6. The parameters of lines

(assuming here to be frequency independent) are

1= 309 nH/m

lM = 21.7 nH/m

c =144 pF/m

cm = – 6.4 pF/m

r = 524 mS1/m

r. = 33.9 mfl/m

g = 905 nS/m

g~ = –11.8 nS/m.

The nonlinear “resistances” are characterized by the rela-

tion

l=10(e40v–1)

where 1 is the current in nA flowing through the” resistor”

and u is the corresponding voltage drop in V. The input

voltage source is shown in Fig. 7(a). The transient voltages

were computed and CPU time recorded in Table I. The

results for active line are plotted in Fig, 7(b).

Example 5: Prototype Interconnections in a Chip Carrier

Interconnections in chip carriers are usually nonuniform

because of the space constraints in the proximity of the

chip. A prototypical two-conductor interconnection is il-

lustrated in Fig. 8(a)’ and (b). The line and terminating

network configuration is shown in Fig. 8(c). The line

parameters computed section by section using the tech-

nique for parallel uniform lines [11] are given in Table II.

The transient caused by the input voltage, u,(t), shown in

Fig. 8(c), was computed using “N= 8 terms in Chebyshev

series. The near-end and far-end voltages on active line are

shown in Fig. 9(a). The effects of varying line impedance

(changing from low to high) are clearly visible. The corre-

sponding responses on quiescent line are shown in Fig.

9(b). For comparison purposes the nonuniform lines were

replaced by two lines of the constant width of 21.4 rnils.

Remaining parameters (thickness, separation between the

axes, distance from the ground plane) were unchanged.

The transients (caused by the same input voltage) on ‘active

line are shown in Fig. 10. The same results, differing by no

more than 1 mV, were obtained using SPICE. Each line

was modeled using a chain of 500 L, C elements. The CPU

v~(t) t [v]
1.0 -

07 -

t

000.4 10 2.0 3034 4.0
[nse~

(a)

0.50

045

0.40

035

030

025 -

:020 -

‘ 0.1!5 - I

010 -
i
I

-0.05 -

–n In . , I # I I 1 I I 1 I I 1 , 1 1 I I I 1
“,, ”

02468 10 12 14 16 18 20

nanoseconds

(b)

Fig. 7. Transients in the transmission system with nonlinear termina-
tions. (a) Input voltage, o,(t). (b) Voltages on the active line: A—Near

end, and B—Far end.

time for computing using our program and SPICE is given

in Table I. Our program is more than one order magnitude

faster than SPICE in this particular application.’ The CPU

time savings will be even greater in applications to systems

with more than two conductors.

VIII. CONCLUSIONS AND FURTHER RESEARCH

The spectral technique is used to transform partial dif-

ferential equations describing a system of transmission

lines into a set of linear ordinary differential equations,

which can be solved with one of the many well-developed

integration techniques. The derivation is somewhat tedious

but the resulting evolution equations are very simplle and

can be solved very efficiently with the help of a digital

computer. The numerical experiments performed with the

prototype program showed that the method can solve

specific problems (lossless, uniform lines) just as fast as

less general methods based on modal analysis exploiting

the particular properties of lines. This is achieved in spite

of the fact that the prototype program utilizes a rather

primitive integration method based on the state transition

matrix. An obvious improvement that soon will be ex-

ploited is better approximation of the integrand in the

increment equation. We shall use linear and parabolic

interpolation in performing the integration.

In future work, other integrating methods will be used

in a quest for further efficiency improvements.
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Fig. 8. Fragment of the protot~ical interconnection in a chip carrier. (a) Top view of metallization. (b) Geometry of

cross-section. (c) Circuit configuration of the interconnection and driving voltage, q(t).

TABLE II
PARAMETERS OF NONUNIFORM TRANSMISSION LINF SYSTEM

rz

O.:rnl.o

1.14

1.29

1.43

1.57

1.71

1.86

2.0-3.0

Cll = C22 C12 = C21 L,l = LM L21 = LIZ
pF/cm pF/cm nH/cm nH/cm

1.84 -0.090 1.96 0.23

J-
1.76 -0.073

1.60 -0.050

1.44 -0.035

1.28 -0.024

1.12 -0.017

0.96 -0.012

0.88 -0.009 -L
2.04 0.22
2.22 0.20
2.43 0.19
2.69 0.17
3.01 0.17
3.44 0.16
3.71 0.16

The most important feature of the method is its general-

ity: it can easily be applied to uniform and nonuniform

lines. The final algorithm can be used to develop a line

equivalent circuit which is helpful in situations where

boundary conditions are determined by the networks of

passive and active elements (transistors). In such situations

the line analysis must be combined with the network

analysis, and the use of the equivalent circuit is essential.

The version of the algorithm presented in this paper is

directly applicable to the analysis of lines with frequency-

independent parameters. In some cases, interconnections

are modeled more accurately by the lines with frequency-

dependent parameters. For such situations further devel-

opments of spectral analysis are necessary and will be

reported in a separate paper.

APPENDIX

DERIVATION OF SPECTRAL EQUATIONS

FOR A SYSTEM OF COUPLED TRANSMISSION LINES

The formulation of spectral equations for multiple trans-

mission lines follows the procedure described for the case

of a single line. Thus the expansions defined by (37) and

(39) and the expansions for the derivatives

(Al)

are used to eliminate the variables representing the line

voltages and currents from (7) and (8). The procedures for

(7) and (8) are analogous and the discussion given here will

be limited to the procedure involving (7) only. The equa-

tions are multiplied by Chebyshev polynomials and appro-

priate inner products are formed. Using previously estab-

lished properties of Chebyshev polynomials we obtain

(after some manipulation) the following equations:

where ~~ = (a$J(t) a~~(~) . . . )T and ~H* are infinite

vectors.

The entries of matrices KJ~r and KJ~l are defined as

follows:

–1

2(
K,~’(k, m) = — r~:m + rfl-ml )

K1~l(k, m) = ~=(lf+m+lf-.,), k,m=l,2, . . . .

(A3)

The matrices KJ;’ and KJ;[ are infinite. In practical
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Fig. 9. Transients in the nonuniform interconnection. (a) Voltages on

the active line: A—Near-end, and B—Far end. (b) Voltages on the

quiescent line: A—Near-end, and B—Far end.

computations we use Chebyshev series which are truncated

at N, and therefore those matrices are also truncated. The

resulting truncated matrices, denoted KJ~~,K~~, are square

and have dimensions of (IV+ 1) x ( IV + 1). We then use

relations of the type given by (27) and (28) between the

coefficients of expansions for the functions and their

derivatives, which with truncation of series at k = N can

be written is the form

where H is the conversion matrix defined in (29)

is a truncated vector of expansion coefficients

derivatives

(A4)

and A?

for the
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Fig. 10. Transient voltages on the active line of uniform transmission

system. A—Near-end. B—Far-end.

Using near-end voltages VJ( – 1, t), we can write

(-l) ’’’’+ ’a~+l(t)+ ~ (-1) ’a~(t) =q-l,t). (A5)
k=O

This relation, used in the procedure developed for single-

line equation (see (31), (32)), allows us to write (A4) in the

form

QAj+eNq(-l, t)=”HA; (A6)

where Q is the matrix defined in (31b) and e~ is the vector

defined in (31a). Using (A6) in (A2), with truncation of

series after the Nth term, we obtain (40b). Equations (40a)

are obtained following an analogous procedure with the

use of far-end currents, ij (1, t),in building the relation

Ql~J+ e~~ij(1,t) = HBJ*

between the truncated vectors of coefficients for current,

Bj, and current derivatives, B,*, respectively. The matrix

QI and the vector eNl are the same as those used in

developing (35). The truncated matrices K;. and K~~ have

entries defined as follows:

–1
( ) k,m=l,2,..., N,K&(k, m) =7 g$~~+g~-~l ,

(A7)
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