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Analysis of Transients in Nonuniform and
Uniform Multiconductor Transmission Lines

OLGIERD A. PALUSINSKI, SENIOR MEMBER, IEEE, AND ANYU LEE

Abstract —Delay times of digital logic circuits are now becoming smaller
than those of interconnections used in packaging. At high speeds, such
interconnections no longer behave as simple short circuits, but take on the
appearance of transmission lines. One may choose to solve the problem of
delay by increasing the density of the system. This, however, introduces
the problem of “cross talk.” The analysis of delay and cross talk in a
system of transmission lines is rather complex; for this reason, it is usually
done with the aid of computer simulation. The present paper introduces a
very efficient and flexible time-domain analysis technique to predict the
reflections and cross talk. Numerical results show that this technique is
indeed efficient and accurate in the transient analysis of general multiple
coupled line systems. Furthermore, this algorithm will eventually be coded
in a form of subroutine compatible with any standard CAD program, such
as SPICE. '

I. INTRODUCTION

HE TRANSIENTS in high-speed digital integrated
Tcircuits are characterized by a signal rise time shorter
than one nanosecond. The interconnections in systems
composed of such circuits have to be treated as multiple
coupled transmission lines. A designer of interconnections
must take into account effects associated with transmission
lines such as delays, reflections and cross talk.

A possible solution to the problem of reflections is to
decrease the length of the interconnections by increasing
the system density. The trend toward greater density,
however, brings about another problem, that of cross talk
between the various conductors of the system. This cou-
pling, which often exists between two adjacent transmis-
sion lines, may be strong enough for signals to appear on
both lines when they are desired only on one. The problem
of cross talk is present even if lines are terminated, and
since these lines are carrying digital information, this un-
wanted coupling introduces false information into the sys-
tem. The general category of extraneous voltages and
currents due to reflections and cross talk is commonly
called interconnection noise. Hence, in designing a high-
speed digital system, both the circuits and the interconnec-
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tions must be considered or system performance may be
impaired. The analysis of system interconnections is in-
volved owing to the presence of multiple lines and discon-
tinuities caused by the abrupt changes of geometry at
pads, pins, and even conductor bends. Such discontinuities
are modeled by equivalent circuits which give satisfactory
results for the transients of interest caused by the signals
with rise times not smaller than 100 ps. Metal lines be-
tween the discontinuities are modeled as transmission lines.
The lines on boards are treated as uniform. The lines on
chip carriers, between chip pads and pins, are usually
nonuniform owing to geometrical constraints. Thus when
analyzing the signal transmission through the interconnec-
tions between the fast integrated circuit chips, one needs to
deal with a model composed of various transmission lines
interconnected through equivalent circuits represénting the

discontinuities.

A considerable amount of work has been done on the
properties and applications of multiple coupled intercon-
nections since 1970 and even earlier [1]-[8]. Almost all of
them dealt with lossless lines, for which analysis can be
greatly simplified after introducing the so-called normal
propagation modes. The disadvantage of this mode-based
analysis is mainly its inflexibility; for example, it cannot
easily handle lossy and nonuniform coupled lines. Besides,
this method is not efficient when lines are terminated with
nonlinear networks, which is the case in practice. The
lossy, uniform lines are computed using modal analysis in
the frequency domain [6]-[8] and tedious, error-prone
transforming procedures are necessary to obtain the results
in the time domain. The modal analyses (in both the time
and the frequency domain) are not applicable to nonuni-
form lines. A method based on perturbational techniques
for analysis of a pair of nonuniform lines is presented in
[9]. This approach involves complex procedures employing
many simplifying assumptions, and its applicability is basi-
cally limited to two lines only. The computation of trans-
mission line parameters has received much attention in the
literature [10]-[12]. Such parameters are usually arranged
in the form of conductance, resistance, inductance, and
capacitance matrices and it is assumed here that those
matrices are available.

The purpose of this paper is to present an effective
method for computation of the transient response of multi-
ple nonuniform transmission lines. The important feature
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of the method is its flexibility in application to many types
of transmission lines (lossless, lossy, uniform, nonuniform)
and to arbitrary circuit terminations. Based on the final
formula derived in this analysis, we can easily convert the
transmission lines to general active resistive networks. Thus
the time-domain transient behavior of coupled lines with
terminating networks can be analyzed by general circuit
simulation procedures.

The method derived in this paper is based on the spec-
tral method often used in applications to the numerical
solution of partial differential equations [13}~[15]. The
essential idea is to approximate spatial or time derivatives
by constructing a global interpolant through discrete data
points. The most useful interpolants are Chebyshev and
Legendre polynomials [16]. The advantage of spectral
methods is that they are more accurate than finite differ-
ence or finite element methods, so that fewer grid points
are needed. The stability theory for algorithms based on
spectral techniques is not yet as developed as in the case of
finite differences [17], but recent mathematical publica-
tions [14], [18] indicate efforts aimed at improving this
situation.

In this paper we choose Chebyshev polynomials as the
interpolants, because they have much simpler representa-
tion of derivatives and are very efficient in the computa-
tions owing to the relation with the fast Fourier transform
(FFT).

II. MATHEMATICAL MODEL OF NONUNIFORM
INTERCONNECTION

A nonuniform interconnection is characterized as a
transmission line with spatial variations of resistance, ca-
pacitance, etc., caused by changes in geometry or materials
along the connecting direction. Under the TEM assump-
tion we obtain a set of partial differential equations

v di
=—r(x)i—-I(x % (1)

Bx
adi dv
=g —e(x)5 @
where
v=uv(x,t)
i=i(x,1).

We assume that equations are in dimensionless form; the
scaled spatial variable is in the range [—1,1].

The voltage v and current / must satisfy the boundary
conditions:

v(~=1,8)=F[i(-1,1),1]
v(1,)=9[i(1,1),t].

()
(4)

The symbols # and ¢ represent operators which might be
time varying and in general describe the ordinary differen-
tial equations characterizing the terminating networks.
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The line voltage and current must also satisfy the initial
conditions:

0(x,0) = hy(x) (5)
i(x,0) =, (x) (6)

where h;(x) represents the initial voltage distribution and
h,(x) is a function describing the initial current distribu-
tion. The functions r(x), /(x), g(x), c(x) are determined
from the electromagnetic field calculations and are as-
sumed to be given.

For multiple coupled lines, we can generalize (1) and (2)
to get

dv A A Qi

A I i 7
Ix kgl’}k(x)’k kgl jk(x) P) (7)
ai; X X v,
79;_—k=1gjk(x)vk_kz=:1cjk(x)W

for j=1,2,3,---, % (8)

where 4" denotes a number of lines (excluding the refer-
ence line):

j=1,2,, X
F=1,2,, 4.

v,=v(x,1),
i,=1i/(x,1),
The functions of 7,.(x), g (x), ;(x), and ¢, (x) are as-

sumed to be given. The line voltages v, and currents i,
must satisfy the boundary conditions:

v,(—1,2) = F[iy(=1,1),i,(=1,1), -+, iy (=1,1),1]
©
Uj(l’t) =gj[i1(1’t)’i2(1’t)’. ' "if(lat)’t]
(10)

where the symbols # and ¢ are the operators represent-
ing the differential equations which describe the terminat-
ing networks.

The line voltages and currents at the moment =10
(initial moment of transient analysis) are given in the form

v,(x,0) = Ay, (x) (11)
i,(x,0)=hy,(x) (12)

where £, ,(x) represents the initial distribution of voltages,
and 4, ,(x) are functions describing initial distribution of
line currents.

Introducing the vector notations

b= [U1avz>""0f]T

i=[i1,i2,---,if]T (13)

C(x) = {ep(x)} L(x)={/(x)}

R(x) = {re(x)} G(x)={g(x)}
Jok=1,2,---, %
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we can write (7) and (8) in a convenient, compact form:

v . ai
—3—x= —R(X)t—L(X)E;
ai 3 do
E——G(x)v—C(x)—a—t (14)

The boundary conditions are written in the form
o(=1,1) =#[i(-1,1),1] (15)
o(1,2) =%[i(1,1),1] (16)
where % is a vector operator with the entries 9';(-),
j=12,---, ¢, and ¥ represents a vector with the entries

G() j=12, A

The initial conditions written in the vectorized form are
v(x,0) = hy(x) (17)
i(x,0) = hy(x) (18)

where
th(x) = [hu(x), hip(x), -, hl.x’(x)]
hg(x)==[hm(x)’hn(x)f"7hz%(x)y
III. FORMULATION OF SPECTRAL EQUATIONS

In this part, we describe the approach for solving the
interconnection line problem using the Chebyshev polyno-
mials. At first, we need to decide how to expand the
unknown variables in the Chebyshev series. We have fol-
lowing choices:

1) time-expansion approach
2) spatial-expansion approach.

Here we would like to concentrate on the second ap-
proach, because it gives a more convenient representation
of boundary conditions and the derivations are simpler.
The time-domain expansion method will be discussed in a
separate report. In order to make the derivation of the
algorithm easy to understand, we start with the single-line
case and then extend the results to the multiline case.

Using Chebyshev polynomials to represent the variation
in space, we can express the i and v as follows:

[ee]

v=Y"a,(t)T,(x)

n=10

i= i:'ob,,(z)z;(x).

(19)

(20)

It is also convenient to assume here the expansion of
derivatives in the form

dv o,

2= Y ap(OT() (212)
k=0

= X p 0T (21b)

The symbols T,(x) are Chebyshev polynomials and
a, (1), b,(r) are the coefficients of expansion to be deter-
mined. The expansion coefficients for the derivatives,
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a,; (1), (1), will later be replaced by simple combinations
of a(t) and b(¢). The symbol ¥ denotes the summation
with the first component divided by 2. This notation
simplifies the formulas and is commonly used in spectral
techniques [19].

Inserting the expansions (19)—(21) into the model equa-
tions (1) and (2) yields

Z af (1)Ti(x) =—r(x) Z b()Ti(x)

_I(X)Z k()

T.(x) (22a)

S b ()T(x) = g(x) 2 EROLAE

k=0

- c(x)kg0 Tk(x). (22b)

The line parameters, which are functions of x, are ex-
panded in Chebyshev series:

(x)= kf’orkau) (230)
I(x) = kzoz T (x) (23b)
6()= ¥ ailx) (230)
e(x) = éocka(x). (23d)

The symbols 7, I, g, and ¢, represents constants defined
as

(%), T(x))
(). L))
IRCORAC)
£ (T(x), T(x))
| ). 1)
k, <Tk(x),'Tk(x)>
(e(x), T (x))
(Ti(x), T (x))
where {a, b) denotes the inner product of a, b defined for

Chebyshev polynomials [19]. Inserting (23) into (22), we
get ‘

Cr=

Y ar (T () == ¥ ¥ rb(0T ()T (x)
k=0 k=0;=0
-F 52U ) e
k=0y=0
X 2000 == ¥ ¥ ga(0 ()T
_y i cjda;(t)Tk(x)J;(x). (24b)
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Equations (24a) and (24b) have identical structures; there- Writing the relations (27) and (28) in matrix form, with the
fore we shall continue the discussion of (24a) only. The truncation, we obtain
same approach will then apply to (24b).

1_ ES
Performing the inner product of both sides of (24a) with @ =HA (29)
T,(x), we get where
T
fl a¥(t )T (x),T,(x)) a'=[ay(1), ay (1), -, )]
ko A*=[a{)k(t)’al*(t)a'”’a;\;(t)]T
= f’ ~ b () r (T (x)T(x), T, (x)) and the (N +1)X(N +1) square matrix, H, has entries
k=0j=0 ! ! " defined as follows:
o, &, dby(1) 1 — e N
- Z Z lj dt <Tk(x)]}(x)aTm(x)>' (25) 21" 1<l ‘]<N 1
k=0j=0 1
Considering the relations [19] h,={ " 2" I<i=j-2<N-1
1
1 - L L
Tk7}=5(Tk+j+T|k—j|)9 k,j=0,1,2,--- TR i=j=Nandi=j=N+1
0, otherwise.

<Tk’Tm> =8km L. . .
We want to eliminate vector ' in (29) and replace it

and using the vector notation, we write (25) in the form with the vector A7=[ay(t), a,(1), -, ay()]. Using the
db expansion (19) (truncated after N +1 term) to represent
Ak = K B+ K— (26) the near-end boundary voltage, v(—1,¢), and taking into
dt account that T,(—1) = (—1)¥, we obtain
where N+1

. r Y (-Dfa(t)=v(~1,1)
A*=[ag (1), ar(1), ] k=0

R T or else
B=[b0(t)7b1(t)""] N
. 1 ay(t)= X (=D)"Fay ()= (-1)"o(-1.1). (30)
Kr(l’j)=_5(rl+j+r[l—j]) k=0
) Using this relation we can now write '
K,(i,j)=—5(l,+j+l|,_j|), i,j=0,1,2,---. a1=QA+eNU(—1,t) (31a)
We shall now eliminate a}(¢) by a,(t) using the relation here Q is a (N+1)X(N +1) square matrix and ey is a
[14] (N +1)-dimensional vector:
1 : N
ay(1) = 3= (af(D)=afa(1)  form=12,---. ek =000, -(-1"].
(27)  The matrix Q is defined as follows:
0 1 0 0 -+ 0
0 0 1 0 e 0
Q= : : : : Lo (31b)
1
DY =DV (DY —(-DY
Truncating the series at n = N, we get The formula (31a) used in (29) yields the desired relation
between the vectors 4 and A* in the form
) QA4+ eyo(~1,1) = HA*. (32)
ay(t) = ﬁa;;—l(t ) The equations (26) written for the series truncated at N,

and multiplied from the left by the matrix H, yield

dB
QA+ eyo(=1,1) = HK,B+ HK,— (33)

1
ay(t) = s ak (). (28)

2(N+1) where K,, K, are truncated (N + 1) X (N +1) matrices ob-
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tained from infinite matrices K,, K, and

= [bO(t)’ bl(t)" : "bN(t)]'

The initial conditions B(0) are determined using the line
initial current distribution (6):

2i(x,0),1) k=0;

5. (0) ={(i(x,0),Tk(x)), 1<k<N

(34)

An analogous procedure is applied to equations (24b)
with the difference that in eliminating the coefficients
bi(t) for the expansion of current derivatives by the
coefficients b,(¢) defining the current expansion, we use
the far-end boundary condition, i(1, ¢), for the current and
the fact that 7, (1) =1. The resulting equations are

dA
0B +eyi(l,t)=HK A+ HKCE

(35)

where @, is an (N+1)X(N+1) square matrix, eN1 is an

(N +1)-dimensional vector defined as e, =[0,0,--+,0,1],
and
. . 1 . -
Kc(lﬁj)=_5(ci+j+c|i—j|)9 1512091,2a“',N
» . 1 . .
Kg(l’])z—'i(gz+j+g|;—j|)7 i,j=0,1,2,---,N.

- (36)

The matrix Q; has the same structure as the matrix Q
defined in (31b) but the last row has as its first entry
—1/2 and the remaining entries are all of value —1. The
initial conditions, A(0), are determined using the initial
distribution of voltage in the line as given in (5) and the
procedure analogous to the one determined by (34).

1V. SpecTRAL EQUATIONS FOR MULTIPLE LINES

The treatment of multiple-line equations is analogous to
the one for a single line. We expand the line voltages and
currents in series:

; af(t)T;(x)

i = f’obz(t)Tk(x)

k

Uj=

»
) Ms

(37)

[l

where aj(1), bj(2), j=0,1,2, -+, X, are unknown coeffi-
cients to be computed. Those are arranged in vectors 4, B
with entries 4, B; defined as follows:

= [a4(1), af(r),--]"

= [6d(1), bi(r),---1". (38)

The line parameters (entries of L(x),C(x), R(x),G(x)
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matrices) are also expanded into Chebyshev series:

1) = 1T
n3) = ¥ 1)

/"Tk(x

II
,r
8 n M8
O

(39)

These expansions are then applied to equations (7) and (8)
and the properties of Chebyshev polynomials are used to
construct the truncated equations for the vectors 4, B of
unknown coefficients. The procedures are described in the
Appendix. The resulting equations are

3 hKia

P'T(x).

ga(x)=Y'1

k=0

dA,
n+ ZH n

01B;+eyii,(1,1) = 4

dB,
QA,+eyv (~ 1t)—ZH,,, : ):HK’—— (40)

n=1
j=1927"','~){

where H is the matrix defined in (29), Q and Q, are the
matrices defined in (31b) and (35), respectively, e, and
ey, are the vectors defined in (31a) and (35), respectively,
and KJ’n, K, K, and K3, are square (N +1)X(N+1)
matrices formed (assummg the truncation of Chebyshev
series at N) by the known coefficients of line parameter
expansions (see the Appendix).

Introducing the (N +1)X J#'(N +1) square matrices

IZI:H{K!'IJ}
K,=H{K:}
£,= 1K)
Kg:H{Ki%}
i,j=1,2,---.
Q=diag{Q}
Q, = diag {0, }
E =diag{ey }

‘ E, = diag{ey; }
D("—].,t) = [Ul(“l,[),l)z(—l,l),' ' 'avf(__lrt)]T
i(l’t) = [il(lvt)’iZ(Lt)" . '7i9f(1’t)]T (41)

we can write (40) in compact form:

N _ dA
QB +Eii(1,1) =K A+ K.~

(42)

which is analogous to (33), (35). In the definitions (41) the
symbol “diag{(-)}” designates a block diagonal matrix

- . dB
QA4+ Ev(~1,1) =K,B+K,7d—t—
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composed of identical blocks (). The initial conditions,
A(0), B(0) are determined using relations (11) and (12) in a
way similar to the one used in the case of a single line.

V. CoMPUTATIONAL CONSIDERATIONS

Equations (42) describing the evolution of expansion
coefficients in the case of multiple lines have the same
form as (33) and (35), corresponding to a single-line case.
Further discussion will therefore be conducted in relation
to (42). This section is devoted to a discussion of numerical
treatment of (42), determining the expansion coefficients.
Introducing the vector notation

(3

we can write (42) in the form

(43)

dp
M’_d? +MP=FEW (44)
where M;, M,, and E are 2M +2)X(2M +2) square
matrices with constant entries, and W is the vector of
forcing functions W7 =[v(—1,¢),i(1, t)]. The matrices in-
troduced in (44) are defined as follows:

K, 0

M,= N

M = K, *~Q1
-0 K,
0 E

E= ”1).
Ey O

Equation (44) is discretized using the popular backward
differentiation formula (BDF) for the derivative approxi-
mation:

dpP

45
dt t=1, ()

1 &
Z ; J n—J
where 4 is the integration step size, @, and k are constants
characteristic for a specific type of BDF, and P, denotes
the numerical approximation to the exact solution P(t,) of
the differential equation at a discrete moment of time, z,.
Application of (45) to (44), expressed for the time =z,
yields
o 1k
(IM, + M,)Pn =EW,— ZM, Zl aP, . (46)
/=

I particular for two-step Gear’s method [20] (k =2, a,
=—2,a,=7}) we have

1
~MP, ,|.

3
29
1
(——M +M)Pn=EWn+Z(2M,Pn_1— 5

(47)

Computations based on (47) require a additional, single-
step formula for starting at ¢ = 0 and after each change of
step size.
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An alternative integration formula can be built using the
matrix exponential. Equations (44) are premultiplied (from
the left) by the inverse of M, (det M, # 0 because K, and
KC are not singular), yielding

ap

—=KP+FW
dt

where K is a square, 24(N+1) X2 (N +1), matrix
defined as follows:

(48)

—KJK,  KQ
szlQ —I%l_llzr

and F is a rectangular, 2¢(N +1)X2X%", matrix of the

form

K=

0  KI'Ey

F=1 .
K 'Ey 0

Using the transition matrix technique [21] we can write
(48) in the difference form

P(tn) =GP(tn—1)+ A})(Z‘n)
where G is the matrix exponential
G = eKAt

and AP(t,) is the increment

(49)
(50)

A
AP(1,) = [TeXOOFW (1, +r)dr.  (51)
0
Equation (49) forms the basis for simple numerical compu-
tation of time evolution of vectors A4, B.

VI. CircultT MODEL OF TRANSMISSION LINE SYSTEM

The analysis provided above allows us to derive a model
of a transmission line system in the form of an equivalent
circuit which is suitable for implementation in a circuit
analyzer. Equation (49) can be written in the form

Pn:GPn—l'FélVVn'*'ézVVn—l (52)

where the vector W, represents voltages at the ends of the

lines
v(—1,¢,
e [T
i(l,z,)

and P, represents the numerical approximation to P(z,).
This approximation is obtained by replacing the vector
function, w(f,_,+ 7), in the integrand with its linear
interpolation based on the end values W,_, and W,. More
sophisticated approximations are available [21], but will

not be discussed in this paper. The rectangular 2¢°(N +1)
X2 matrices C; and C, are defined as follows:

~ 1 Aty
- (Ar—T1)
= ft/ Te Fdr

A ~
G =/O XK@ npdr 6. (53)

Equation (52) can be used to determine the equivalent
circuit for the system of multiple coupled lines. To sim-
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1(=1,tn)

+

vi-1,t)

. G
Fig. 1. Equivalent circuit of transmission lines (for the moment ¢ =1,).

I,V are independent current and voltage sources determined by the
solutions at r=1¢,_;.

v(l,t)

o

plify the notation we restrict the discussion to the case of a
single line only. The results can be extended to multiple
lines without any conceptual difficulty. It will be conve-
nient to introduce the following 2( N +1)-dimensional vec-
tors:

(54)

Using (54), the definition of vector P,, expansions (19) and |

(20), and the fact that T,(1)=1, T,(—-1)=(—-1)", we
obtain

elP,=v(1,t,)
and
elP =i(—-1,t,).

Multiplication of (52) (from the left) by el
quently by e yields therefore

v(1,t,) = e]CW, + e{(GP,_ + C W, _,)
i(=1,1,) =e3CW, + ezT(GPn—1+ CW,_,).

(55)

and subse-

(56)

The second term on the right side of each of the above
equations depends on previously computed quantities and
is thus considered to be given in the solution for step .
These terms will be denoted

el(GP,_,+CW,_,) =V,
e;(GPn—l + é1Wn—1) =I,.

(57)

Taking into account the structure of matrix F and the
definition of the vector W, =[v(—1,1,),i(1,1,)], it is easy
to verify that

e{C'ZVKl = Reqi(17 tn)

ezTéng = Geqv( -1, tn)
where R, and Gq are constants which we call the equiva-
lent resistance and the equivalent conductance.

Using these results and the definitions (57) in (56), we

obtain the following form of difference equations (52) of
the transmission line:

U(l’ tn) = Reqi(l’ tn)+ I/0
i(-1,2,) =G.p(-1,1,)+ I, (58)

This form defines the equivalent circuit shown in Fig. 1.
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TABLE 1
ComparisoN oF CPU TiME (VAX-11/750 VMS) 1N CoMPUTING UsING
DIFFERENT METHODS

Example SPECTRAL UACSL* SPICE
1 20 sec. 8 sec. > 100 sec
2 14 sec. 12-14 sec. > 150 sec.
3 20 sec. not applicable not computed
4 360 sec. 370 sec.*x** not computed**
5 199 sec. not applicable 4 hrs 6 min

*Results obtained using the program UACSL [22]," based on time-
domain modal analysis.

**Estimated CPU time will be several hours.

***Running simplified line model (assuming zero losses) with the use
of expanded UACSL, which allows simulation of nonlinear terminations.

VIL

To illustrate the properties of the algorithm discussed in
this paper, some specific examples are presented. The
numerical results were compared either with published
experimental resuits (if available [1]) or with computations
performed using other programs based on time-domain
modal analysis [22] and the SPICE simulation. The results
of comparisons are very encouraging; the CPU times listed
in Table I show that the efficiency of this method is indeed
impressive.

Example 1: A Three-Conductor Lossless Microstrip

The dimensions of the microstrips and their external
circuit terminations for this example are taken from {1].
The capacitance (in pF/cm) and inductance (in nH/cm)
matrices of the microstrips are, respectively,

NUMERICAL EXAMPLES

1.0413
—0.3432
—0.0140

—0.3432
C

1.1987 —0.3432
—0.3432 1.0413

1.6238  0.8285 )

—0.0140 )

3.8790
1.6238
0.8285

L

3.7129  1.6238
1.6238 3.8790

The input voltage source (in V) is
_ [10¢,
60)_{10

The waveforms of the transient responses computed using
our program are presented in Fig. 2. They are close to the
experimental ones given in [1] within recording accuracy of
about 5 percent. The corresponding CPU time is listed in
the Table 1.
Example 2: Two-Conductor Lossless Lines with Dynamic
Circuit Terminations

The tested circuit is shown in Fig. 3; the line length
s = 2.8 cm. The parameters of the two lines are:

1=10.0656 nH/m
¢=0.98 pF/m
/,=0.0128 nH/m

t<0.1ns
t>0.1ns.

c¢,,=—0.117 pF/m

where / and /,, are self and mutual inductances and ¢ and

c,, are self and mutual capacitances. The input voltage
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Fig. 2. Transient response of the three-conductor system. A—near-end

voltage on active line (¥,). B—Far-end voltage on active line (¥7,).

C,D,E,F—Crosstalk voltages (V3,), (Va,), (V3), (V3,), respectively,

on the lines 2 and 3. Note: The symbols in parenthesis are the same as
those in [reference 1, figs. 8 and 9].
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Fig. 4. Transient voltages in the two-conductor transmission line sys-
tems given in Fig. 3. A—Near-end on active line. B—Far-end on
active line. C—Near-end on quiescent line. D—Far-end on quiescent
line.

source (in V) is
_ [ 10¢,
Us(t) - {1

The computed waveforms of transient responses are given
in Fig. 4. The waveforms were compared to those com-
puted using the UACSL program [22] and SPICE (model
in the form of a chain of L,C lumped circuits). The
solutions were very close within 1 percent accuracy. The
CPU time necessary for solution is shown in the Table I.

t<0.1ns
t>0.1ns.
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Crosstalk voltage in the middle of a quiescent line, computed
using the spectral technique.

Fig. 5.

Example 3: Two-Identical-Conductor Lossy Nonuniform
Lines

The example transmission system is described in [9)]. The
parameters of the two lines having the same length of s =2
cm are

ly
e
1,=k(x)*I(x)
‘T 1-k(x)

cn=k(x)*c(x)

k(x)= 0.25(1+0.6sin(77x + %))

[,=3.87pH/m
¢, =1.0413 pF/m
r=128/m

7, =0.
8§=8m=0.

The symbols /, /,,, ¢, and ¢,, have the same meanings as in
Example 2. The input voltage source (in V) is

2t, 1<0.5ns
(t)— 1, 05ns<¢tr<1ns
S = 1-2(0-1), lns<r<1.5ns
0 t>1.5ns.

The model of this transmission system was implemented
using our prototype program based on the spectral tech-
nique. The transients were computed, and the results com-
pared favorably to those given in [9]. The corresponding
CPU time is given in Table I. An example of cross talk
voltage in the middle of quiescent line (line 2 in [9])
computed using our program is shown in Fig. 5. The result
corresponds to [9, fig. 14].
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Fig. 6. Two-conductor transmission line with nonlinear terminations.

Example 4: Two-Conductor Lossy Transmission Lines with
Nonlinear Terminations

The algorithm based on spectral techniques can be easily
used to compute the transients in the lines with nonlinear
terminations. To illustrate this capability, we use two con-
ductor lines, considered in [7], having a length of 50 cm
and terminated as shown in Fig. 6. The parameters of lines
(assuming here to be frequency independent) are

/=309 nH/m
/,=21.7nH/m
c¢=144 pF/m
¢,=—64pF/m
r=>524 mQ/m
r,=33.9m,/m
g2=9051nS/m

8, =—11.8nS/m.

The nonlinear “resistances” are characterized by the rela-
tion

I1=10(e%" -1)

where [ is the current in nA flowing through the “resistor”
and v is the corresponding voltage drop in V. The input
voltage source is shown in Fig. 7(a). The transient voltages
were computed and CPU time recorded in Table 1. The
results for active line are plotted in Fig. 7(b).
Example 5: Prototype Interconnections in a Chip Carrier
Interconnections in chip carriers are usually nonuniform
because of the space constraints in the proximity of the
chip. A prototypical two-conductor interconnection is il-
lustrated in Fig. 8(a) and (b). The line and terminating
network configuration is shown in Fig. 8(c). The line
parameters computed section by section using the tech-
nique for parallel uniform lines [11] are given in Table II.
The transient caused by the input voltage, v,(¢), shown in
Fig. 8(c), was computed using N =8 terms in Chebyshev
series. The near-end and far-end voltages on active line are
shown in Fig. 9(a). The effects of varying line impedance
(changing from low to high) are clearly visible. The corre-
sponding responses on quiescent line are shown in Fig,
9(b). For comparison purposes the nonuniform lines were
replaced by two lines of the constant width of 21.4 mils.
Remaining parameters (thickness, separation between the
axes, distance from the ground plane) were unchanged.
The transients (caused by the same input voltage) on active
line are shown in Fig. 10. The same results, differing by no
more than 1 mV, were obtained using SPICE. Each line
was modeled using a chain of 500 L, C elements. The CPU
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Fig. 7. Transients in the transmission system with nonlinear termina-

tions. (a) Input voltage, v,(?). (b) Voltages on the active line: A—Near
end, and B—Far end.
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time for computing using our program and SPICE is given
in Table I. Our program is more than one order magnitude
faster than SPICE in this particular application. The CPU
time savings will be even greater in applications to systems
with more than two conductors.

VIII. ConcrusioNs AND FURTHER RESEARCH

The spectral technique is used to transform partial dif-
ferential equations describing a system of transmission
lines into a set of linear ordinary differential equations,
which can be solved with one of the many well-developed
integration techniques. The derivation is somewhat tedious
but the resulting evolution equations are very simple and
can be solved very efficiently with the help of a digital
computer. The numerical experiments performed with the
prototype program showed that the method can solve
specific problems (lossless, uniform lines) just as fast as
less general methods based on modal analysis exploiting
the particular properties of lines. This is achieved in spite
of the fact that the prototype program utilizes a rather
primitive integration method based on the state transition
matrix. An obvious improvement that soon will be ex-
ploited is better approximation of the integrand in the
increment equation. We shall use linear and parabolic
interpolation in performing the integration.

In future work, other integration methods will be used
in a quest for further efficiency improvements.
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Fig. 8.
TABLE II
PARAMETERS OF NONUNIFORM TRANSMISSION LINE SYSTEM
z Ci1 = Cqq Cia=Cy Liy= Loy | Loy =Lz
cm pF/cm pF/cm nH/cm nH/cm
0.0-1.0 1.84 -0.090 1.96 0.23
1.14 1.76 -0.073 2.04 0.22
1.29 1.60 -0.050 2.22 0.20
1.43 1.44 -0.035 2.43 0.19
1.57 1.28 —0.024 2.69 0.17
1.71 1.12 -0.017 3.01 0.17
1.86 0.96 —0.012 3.44 0.16
2.0-3.0 0.88 -0.009 3.71 0.16

The most important feature of the method is its general-
ity: it can easily be applied to uniform and nonuniform
lines. The final algorithm can be used to develop a line
equivalent circuit which is helpful in situations where
boundary conditions are determined by the networks of
passive and active elements (transistors). In such situations
the line analysis must be combined with the network
analysis, and the use of the equivalent circuit is essential.
The version of the algorithm presented in this paper is
directly applicable to the analysis of lines with frequency-
independent parameters. In some cases, interconnections
are modeled more accurately by the lines with frequency-
dependent parameters. For such situations further devel-
opments of spectral analysis are necessary and will be
reported in a separate paper.

APPENDIX
DERIVATION OF SPECTRAL EQUATIONS
FOR A SYSTEM OF COUPLED TRANSMISSION LINES

The formulation of spectral equations for multiple trans-
mission lines follows the procedure described for the case
of a single line. Thus the expansions defined by (37) and

(39) and the expansions for the derivatives

o]

=Y a

k=0

()T (x)

2= ¥ b (DT(x) (A1)
X k=0

are used to eliminate the variables representing the line
voltages and currents from (7) and (8). The procedures for
(7) and (8) are analogous and the discussion given here will
be limited to the procedure involving (7) only. The equa-
tions are multiplied by Chebyshev polynomials and appro-
priate inner products are formed. Using previously estab-
lished properties of Chebyshev polynomials we obtain
(after some manipulation) the following equations:

oA
- ¥ Kb+ £ Kt
h=

n=1

dB*

e’

a
*

; =1,2,--

J A

(A2)
where A* = (a /(1) YT and B are infinite
vectors.

The entries of matrices K %" and K%' are defined as
follows:

ai*/(1)

K*r(k m) (rlg:m+r|{<n—m|)

),

ijzl(k’ m) = )

- k,m=1,2,--.
(A3)

The matrices K %" and K3}’ are infinite. In practical
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Fig. 9. Transients in the nonuniform interconnection. (a) Voltages on

the active line: A—Near-end, and B—Far end. (b) Voltages on the
quiescent line: A—Near-end, and B—Far end.

computations we use Chebyshev series which are truncated
at N, and therefore those matrices are also truncated. The
resulting truncated matrices, denoted K i K }n, are square
and have dimensions of (N+1)X(N +1). We then use
relations of the type given by (27) and (28) between the
coefficients of expansions for the functions and their
derivatives, which with truncation of series at k=N can

be written is the form

a{(1)

“ﬁft) - HA* (A4)

a{v+1(t)

where H is the conversion matrix defined in (29) and 4 N
is a truncated vector of expansion coefficients for the
derivatives

Ar=(ad!(t) ar(1)--ap(1))"
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Fig. 10. Transient voltages on the active line of uniform transmission
system, A—Near-end. B—Far-end.

Using near-end voltages v,(—1, ¢), we can write
(D" a1 (0)+ T (=D af(t) =,(~1,2). (A5)
k=0

This relation, used in the procedure developed for single-
line equation (see (31),(32)), allows us to write (A4) in the
form )

QA,+eyv (—1,t)=HA} (A6)
where Q is the matrix defined in (31b) and ey is the vector
defined in (31a). Using (A6) in (A2), with truncation of
series after the Nth term, we obtain (40b). Equations (40a)
are obtained following an analogous procedure with the
use of far-end currents, i (1,¢), in building the relation

OB, + ey, (1,1) = HBx*

between the truncated vectors of coefficients for current,
B;, and current derivatives, B/*, respectively. The matrix
Q, and the vector ey, are the same as those used in
developing (35). The truncated matrices K%, and K}, have
entries defined as follows:

K(kom) = —= (el + cfim)

k,m=1,2,-+,N.
(A7)

-1
K2, (ks m) = —= (8L + 81 m):
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